Prolonged inhibition of O(6)-methylguanine DNA methyltransferase in human tumor cells by O(6)-benzylguanine in vitro and in vivo.
نویسندگان
چکیده
We previously demonstrated that sustained depletion of methylguanine DNA methyltransferase (MGMT) activity is required for optimal reversal of chloroethylnitrosourea resistance in tumor cells. The purpose of this study was to design O(6)-benzylguanine (BG) treatments that deplete MGMT activity in tumor cells and xenograft tumors in a prolonged manner. When SF767 cells were treated with a bolus dose of BG (25 microM for 1 h), >95% of MGMT activity was depleted but 33% of the activity recovered within 24 h. In contrast, MGMT activity was completely depleted for 24 h when cells were pretreated with a low dose of BG (2.5 microM) for 24 h, followed by the bolus dose and same low-dose treatment for 24 h. This combination regimen of pre- and post-treatments with a bolus dose sensitized cells N,N'-bis(2-chloroethyl)-N-nitrosourea in vitro by approximately 2-fold more than the bolus dose alone. Similar BG treatment with Alzet micro-osmotic pumps produced sustained inhibition of MGMT activity in vivo. In xenograft SF767 tumors, low-dose pre- and post-treatments (8 mg/kg over 24 h) combined with an i.p. bolus dose (80 mg/kg) of BG inhibited >95% of MGMT activity for 24 h after the bolus. The bolus dose alone did not deplete MGMT for 24 h. These results demonstrate that combination low-dose and bolus BG treatment is superior to the bolus dose alone in depleting MGMT activity in a sustained manner in vitro and in vivo. When combined with N,N'-bis(2-chloroethyl)-N-nitrosourea treatment, this BG regimen also should also produce greater antitumor activity than the single bolus dose evaluated clinically.
منابع مشابه
Inhibition of O6-methylguanine-DNA methyltransferase by glucose-conjugated inhibitors: comparison with nonconjugated inhibitors and effect on fotemustine and temozolomide-induced cell death.
The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) is an important suicide enzyme involved in the defense against O(6)-alkylating mutagens. It also plays a role in the resistance of tumors to anticancer drugs targeting the O(6)-position of guanine, such as temozolomide and fotemustine. Several potent MGMT inhibitors have been developed sensitizing cells to O(6)-alkylating ag...
متن کاملTemozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms.
PURPOSE In this study, we investigated the mechanisms by which temozolomide enhances radiation response in glioblastoma cells. EXPERIMENTAL DESIGN Using a panel of four primary human glioblastoma cell lines with heterogeneous O(6)-methylguanine-DNA methyltransferase (MGMT) protein expression, normal human astrocytes, and U87 xenografts, we investigated (a) the relationship of MGMT status with...
متن کاملDisulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage.
The alcohol aversion drug disulfiram (DSF) reacts and conjugates with the protein-bound nucleophilic cysteines and is known to elicit anticancer effects alone or improve the efficacy of many cancer drugs. We investigated the effects of DSF on human O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein and chemotherapy target that removes the mutagenic O(6)-akyl groups from guani...
متن کاملInactivation of human O(6)-alkylguanine-DNA alkyltransferase by modified oligodeoxyribonucleotides containing O(6)-benzylguanine.
Inactivation of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) enhances tumor cell killing by therapeutic alkylating agents. O(6)-Benzylguanine (b(6)G) can inactivate AGT and is currently in clinical trials to enhance therapy. Short oligodeoxyribonucleotides containing b(6)G are much more effective inactivators, but their use for therapeutic purposes is likely to be comprom...
متن کاملO6-Methylguanine induces altered proteins at the level of transcription in human cells
O(6)-Methylguanine (O(6)-meG), which is produced in DNA following exposure to methylating agents, instructs human RNA polymerase II to mis-insert bases opposite the lesion during transcription. In this study, we examined the effect of O(6)-meG on transcription in human cells and investigated the subsequent effects on protein function following translation of the resulting mRNA. In HEK293 cells,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 291 3 شماره
صفحات -
تاریخ انتشار 1999